National Storage

Acid Sulfate Soils Assessment: 11 and 11A Edinburgh Road, Marrickville, NSW

ENVIRONMENTAL

WASTEWATER

CIVIL

PROJECT MANAGEMENT

P2108688JR02V01 June 2022

Copyright Statement

Martens & Associates Pty Ltd (Publisher) is the owner of the copyright subsisting in this publication. Other than as permitted by the Copyright Act and as outlined in the Terms of Engagement, no part of this report may be reprinted or reproduced or used in any form, copied or transmitted, by any electronic, mechanical, or by other means, now known or hereafter invented (including microcopying, photocopying, recording, recording tape or through electronic information storage and retrieval systems or otherwise), without the prior written permission of Martens & Associates Pty Ltd. Legal action will be taken against any breach of its copyright. This report is available only as book form unless specifically distributed by Martens & Associates in electronic form. No part of it is authorised to be copied, sold, distributed or offered in any other form.

The document may only be used for the purposes for which it was commissioned. Unauthorised use of this document in any form whatsoever is prohibited. Martens & Associates Pty Ltd assumes no responsibility where the document is used for purposes other than those for which it was commissioned.

Limitations Statement

The sole purpose of this report and the associated services performed by Martens & Associates Pty Ltd is to provide a site contamination assessment in accordance with the scope of services set out in the contract / quotation between Martens & Associates Pty Ltd and National Storage (hereafter known as the Client). The scope of works and services were defined by the requests of the Client, by the time and budgetary constraints imposed by the Client, and by the availability of access to the site.

Martens & Associates Pty Ltd derived the data in this report primarily from a number of sources which may include for example site inspections, correspondence regarding the proposal, examination of records in the public domain, interviews with individuals with information about the site or the project, and field explorations conducted on the dates indicated. The passage of time, manifestation of latent conditions or impacts of future events may require further examination / exploration of the site and subsequent data analyses, together with a re-evaluation of the findings, observations and conclusions expressed in this report.

In preparing this report, Martens & Associates Pty Ltd may have relied upon and presumed accurate certain information (or absence thereof) relative to the site. Except as otherwise stated in the report, Martens & Associates Pty Ltd has not attempted to verify the accuracy of completeness of any such information (including for example survey data supplied by others).

The findings, observations and conclusions expressed by Martens & Associates Pty Ltd in this report are not, and should not be considered an opinion concerning the completeness and accuracy of information supplied by others. No warranty or guarantee, whether express or implied, is made with respect to the data reported or to the findings, observations and conclusions expressed in this report. Further, such data, findings and conclusions are based solely upon site conditions, information and drawings supplied by the Client etc. in existence at the time of the investigation.

This report has been prepared on behalf of and for the exclusive use of the Client, and is subject to and issued in connection with the provisions of the agreement between Martens & Associates Pty Ltd and the Client. Martens & Associates Pty Ltd accepts no liability or responsibility whatsoever for or in respect of any use of or reliance upon this report by any third party.

© June 2022 Copyright Martens & Associates Pty Ltd All Rights Reserved

Head Office Suite 201, 20 George St Hornsby, NSW 2077, Australia ACN 070 240 890 ABN 85 070 240 890 Phone: +61-2-9476-9999 Fax: +61-2-9476-8767 Email: mail@martens.com.au Web: www.martens.com.au

	Document and Distribution Status													
Autho	r(s)	Reviewer(s)		Project Manager		Signature								
Dec	an Shi	Ben McGiffin		Gray Taylor		array rayh.								
					Documen	t Location								
Revision No.	Description	Status	Release Date	File Copy	National Storage	LRM Global Pty Ltd								
1	For Client review	Draft	22/04/2022	1E, 1P	1P	1P								
1	Final	Final	7/06/2022	1E, 1P	1P	1P								

Distribution Types: F = Fax, H = hard copy, P = PDF document, E = Other electronic format. Digits indicate number of document copies.

All enquiries regarding this project are to be directed to the Project Manager.

Contents

1	INTRODUCTION	. 8
1.1	Overview	8
1.2	Proposed Development	8
1.3	Scope of Works	8
1.4	Reference Guidelines	8
2	SITE BACKGROUND INFORMATION	10
2.1	Site Details	10
3	PRELIMINARY ASSESSMENT	11
3.1	ASS Soil Risk Map Classification	11
3.2	Geomorphic Setting	11
4	FIELD INVESTIGATIONS	12
4.1	Fieldwork Overview	12
4.2	2 Subsurface conditions	12
5	LABORATORY ANALYSIS	13
5.1	Action Criteria	13
5.2	Soil Analytical Results	13
5.3	Interpretation of Results	14
6	CONCLUSION	15
7	LIMITATIONS	16
8	REFERENCES	17

Attachments

ATTACHMENT A : SITE PLANS ATTACHMENT B : BOREHOLE LOGS ATTACHMENT C : LABORATORY SUMMARY TABLE ATTACHMENT D : LABORATORY DOCUMENTATION

Tables

Table 1: Site background information.	10
Table 2: Geomorphic features indicative of ASS	11
Table 3: Laboratory Scr result summary.	13

General Abbreviations

AASS	Actual acid sulfate soil
ABC	Ambient background concentrations
ACM	Asbestos containing material
AEC	Area of environmental concern
AF	Asbestos fines
AMP	Asbestos Management Plan
ANZECC	Australia and New Zealand Environment Conservation Council
ANZG	Australian and New Zealand Governments
ASC NEPM	National Environmental Protection (Assessment of Site Contamination) Measure (2013)
ASS	Acid sulfate soil
ASSMAC	Acid Sulfate Soils Management Advisory Committee
AST	Above ground storage tank
BGL	Below ground level
ВН	Borehole
BTEXN	Benzene, toluene, ethylbenzene, xylene, naphthalene
CEMP	Construction Environmental Management Plan
COC	Chain of custody
COPC	Contaminants of potential concern
DA	Development application
DBT	DibutyItin
DEC	Department of Environment and Conservation
DECC	Department of Environment and Climate Change
DNAPL	Dense non aqueous phase liquid
DP	Deposited Plan
DPI	NSW Department of Primary Industry
DPIW	NSW Department of Primary Industry – Water
DQI	Data quality indicators
DQO	Data quality objectives
DSI	Detailed Site Investigation
EAC	Ecological assessment criteria
EIL	Ecological investigation level
EMP	Environmental Management Plan
EPA	NSW Environmental Protection Authority
EQL	Estimated quantitation limit (interchangeable with PQL and LOR) $% \left({{\left {{\rm{DR}} \right } \right _{\rm{TR}}} \right)$
ESA	Environmental Site Assessment
ESL	Ecological screening level
FA	Fibrous asbestos
GIL	Groundwater investigation level
HIL	Health investigation level
НМ	Heavy metals
HSL	Health screening level
IA	Investigation area
ISQG	Interim Sediment Quality Guideline
ITP	Inspection Testing Plan
LGA	Local government area
LNAPL	Light non aqueous phase liquid
LOR	Limit of reporting (interchangeable with EQL and PQL)
MA	Martens & Associates Pty Ltd
mAHD	Metres, Australian Height Datum
mbgl	Metres below ground level

MBT	MonobutyItin
MNA	Monitored natural attenuation
MPE	Multi phase extraction
NAPL	Non aqueous phase liquid
NATA	National Association of Testing Authorities
ND	No data
NEPC	National Environment Protection Council
NEPM	National Environment Protection Measure
OCP	Organochloride pesticides
OEH	NSW Office of Environment and Heritage
OPP	Organophosphorus pesticides
РАСМ	Potential asbestos containing material
PAH	Polycyclic aromatic hydrocarbons
PASS	Potential acid sulfate soil
РСВ	Polychlorinated biphenyl
PCEMP	Post Construction Environmental Management Plan
PESA	Preliminary Environmental Site Assessment
PFAS	Per and polyfluoroalkyl substances
PID	Photoionisation detector
ppb	Parts per billion
ppm	Parts per million
PQL	Practical quantitative limit (interchangeable with EQL and LOR)
PSI	Preliminary Site Investigation
QA/QC	Quality assurance / quality control
RAC	Remediation acceptance criteria
RAP	Remedial Action Plan
HHRA	Human Health Risk Assessment
RPD	Relative percentage difference
SAC	Site assessment criteria
SAQP	Sampling and Analysis Quality Plan
SEPP	State Environmental Planning Policy
SIL	Soil investigation level
SOP	Standard operating procedure
SWL	Standing water level
SWMS	Safe Work Method Statement
TB	Trip blank
TBT	Tributyl tin
TCLP	Toxicity characteristics leaching procedure
TEQ	Toxic equivalency factor
TP	Test pit
TPH	Total petroleum hydrocarbons
TRH	Total recoverable hydrocarbons
TS	Trip spike
UCL	Upper confidence limit
UPSS	Underground petroleum storage system
UST	Underground storage tank
VHC	Volatile halogenated compounds
VOC	Volatile organic compounds
WHS	Work health and safety
WHSP	Work Health and Safety Plan

ASS Assessment: 11 and 11A Edinburgh Road, Marrickville, NSW P2108688JR02V01 – June 2022

1 Introduction

1.1 Overview

This report, prepared by Martens and Associates (MA), documents an acid sulfate soils (ASS) assessment undertaken on behalf of National Storage (the Client) at 11 and 11A Edinburgh Road, Marrickville, NSW (the site). The assessment was completed as part of a due diligence exercise to support the construction of a multi-level storage facility at the site.

1.2 Proposed Development

From the geotechnical brief (ADG, 2022) and client provided information, we understand that the project comprises the conversion of the existing warehouse to an at – grade multi – level storage facility.

It is understood that the project does not include a basement and will require minimal excavation to achieve design levels. However, excavation will be required for piering (i.e. foundation works likely up to 5.0 – 6.0 metres below ground level (mbgl)) and trenching for underground services up to 1.0 mbgl.

1.3 Scope of Works

The following scope of work was completed as part of this ASS assessment:

- Preliminary assessment of the site (desktop assessment) including review of ASS risk mapping and site specific geomorphic features.
- Field investigation comprising borehole excavation and targeted laboratory testing of soil samples.
- Preparation of a preliminary ASS assessment report in general accordance with ASSMAC (1998) to determine whether an ASS management plan (ASSMP) and / or further investigation works are required.

1.4 Reference Guidelines

This investigation was undertaken in general accordance with the following guidelines:

 Acid Sulfate Soil Management Advisory Committee (1998), Acid Sulfate Soil Manual. Referred to as ASSMAC (1998)

- Qld Natural Resources, Mines and Energy (2004) Acid Sulfate Soils Laboratory Methods Guidelines.
- Water Quality Australia (2018) National Acid Sulfate Soils Guidance: National acid sulfate soils sampling and identification methods manual.

2 Site Background Information

2.1 Site Details

Site information is summarised in Table 1. The site location and general surrounds are shown in Attachment A.

 Table 1: Site background information.

Item	Description / Detail
Site address	11 and 11A Edinburgh Road, Marrickville, NSW.
Legal identifier	Lot 67 in DP 4991 Lot 1 in DP 607677
Local government area	Inner West Council (formerly Marrickville Council)
Site area	0.715 ha (SLR, 2018)
Site description	At the time of this assessment, the existing development at the site comprised commercial facilities including a storage warehouse (in Lot 1 DP 607677) and a car servicing centre (in Lot 67 in DP4991) with concrete hardstand in external areas. An asphalt car park was present on the north western portion of Lot 1 DP 607677.
Topography	The site slopes gently towards the south west with grades of $<5\%$. Site elevation ranges between 4.3 mAHD in the south west, and 5.8 mAHD in the north east. Site contours are shown on Map 02 in Attachment A.
Surface hydrology	Drainage of the site is via overland flow towards to the south.
Vegetation	Existing site vegetation comprises scattered small garden beds containing grass, shrubbery and mature trees.
Expected geology	The Sydney 1:100 000 Geological Sheet 9130 indicates the site to be underlain by Ashfield Shale (Rwa) comprising black to dark grey shale and laminite. (Herbert C., 1983).
Expected soil landscape	The NSW Office of Environment and Heritage's (OEH) information system (eSPADE) indicates the site to be located in the Blacktown (bt) soil landscape, with deep (> 200 cm) total soil depths. A brownish black loam topsoil and deep clayey subsoil is expected to be present at the site.
	shrink – swell (localized) and potential localized salinity hazards.

3 Preliminary Assessment

3.1 ASS Soil Risk Map Classification

The Marrickville Local Environmental Plan (2011) ASS risk map indicates that the entire site is located within a Class 2 risk area for ASS. Class 2 risk designates that any works undertaken below the natural ground surface, or by which the water table is likely to be lowered, will require an ASSMP or a preliminary assessment as per ASSMAC (1998) prior to development consent.

Site location relating to ASS risk is presented on Map 03 in Attachment A.

3.2 Geomorphic Setting

The likelihood of ASS presence at a site is a function of various geomorphic parameters, in particular those listed in ASSMAC (1998).

Geomorphic parameters for the site which may indicate ASS presence are listed in Table 2.

Geomorphic Feature	Present on Site?
Holocene sediments	Possible
Soil horizons less than 5 m AHD	Yes
Marine / estuarine sediments or tidal lakes	Yes
Coastal wetland; backwater swamps; waterlogged or scaled areas; inter-dune swales or coastal sand dunes (i.e. deep excavation is required)	No
Dominant vegetation is mangroves, reeds, rushes and other swamp or marine tolerant species.	No
Geologies containing sulfide bearing material / coal deposits or former marine shales / sediments	Possible
Deep older (Holocene or Pleistocene) estuarine sediments > 10 mBGL (if deep excavation or drainage is proposed)	Possible

 Table 2: Geomorphic features indicative of ASS.

The geomorphic setting of the site indicates that there is a high likelihood of ASS presence, as five of the seven listed geomorphic features are possible or known to be present at the site.

4 Field Investigations

4.1 Fieldwork Overview

Field ASS investigations were completed on 24 March 2022 concurrently with a geotechnical investigation (MA, 2022), and involved the following works:

- Excavation of four boreholes (BH101 BH104) using a hand auger / push tube to a maximum depth of 2.0 mbgl.
- Excavation of three boreholes (BH105 BH107) using a truck mounted drill rig fitted with solid flight augers, to a maximum depth of 7.5 mbgl.
- Collection of representative soil samples from all boreholes for laboratory ASS analysis and future reference purposes.

Testing locations are shown on Map 04 in Attachment A.

4.2 Subsurface conditions

Field investigations observed that the site was underlain by the following generalised subsurface units:

- <u>Unit A</u>: Fill silty clay / silty sand, with gravels, up to 1.3 mbgl (BH107). For the purposes of this report, fill is considered to have been placed under uncontrolled conditions due to the absence of earthworks quality control certification.
- <u>Unit B</u>: Residual soil silty clay, consistencies ranging between firm to hard, with iron indurated bands, trace shale gravels, up to 7.0 mbgl (BH105).
- <u>Unit C</u>: Shale inferred highly weathered, very low to low strength, present below Unit B, up to 7.5 mbgl (BH105). The top of rock is inferred to rise northwards.

Detailed borehole logs are provided in Attachment B.

5 Laboratory Analysis

5.1 Action Criteria

Soil samples were selected for analysis using the chromium reducible sulfur (S_{CR}) method, and assessed against the following action criteria adopted from Table 4.4 of ASSMAC (1998) based on a fine soil type (medium to heavy clays):

- Oxidisable sulphur: S_{CR} is $\geq 0.1\%$; or
- Net acidity is \geq 62 mol H⁺/tonne.

MA understands that the proposed development is not to include a basement, and will not require any significant excavation to achieve design levels. Therefore, this assessment assumes that future works at the site will involve the disturbance of less than 1,000 tonnes of soil material.

5.2 Soil Analytical Results

A total of 14 soil samples taken from BH101 – BH107 were submitted to a NATA accredited laboratory (Envirolab Pty Ltd) for S_{CR} analysis. Samples were taken from fill and natural layers at various depths across the site.

 S_{CR} results are summarised in Table 4 below. Bolded values indicate exceedances of ASSMAC (1998) action criteria. Detailed tabulated results are provided in Attachment C.

ID	Sample Depth (mbgl)	pH _{kcl}	Sulfur Trail (S _{CR}) (%S)	Net Acidity (acidity units, mol H+/t)
BH101	1.4 -1.6	3.9	0.007	84
BH102	1.3 - 1.5	4.4	0.006	46
BU1102	1.5 - 1.7	4	0.006	63
вп103	1.8 - 2.0	4	<0.005	89
BH104	1.0 - 1.2	6.9	<0.005	<5
	0.15 - 0.25	5.6	0.02	15
BH105	2.5 - 3.0	4	0.007	100
	4.8 - 5.1	4	<0.005	51
	1.7 - 2.0	3.8	<0.005	89
BH106	3.0 - 3.2	3.8	<0.005	50
	5.1 - 5.3	3.9	<0.005	52

 Table 3: Laboratory SCR result summary.

ID	Sample Depth (mbgl)	pH _{kcl}	Sulfur Trail (S _{CR}) (%S)	Net Acidity (acidity units, mol H+/t)
	0.3 - 0.4	9.9	<0.005	<5
BH107	2.5 - 2.9	3.8	<0.005	49
	4.7 - 5.0	4.2	<0.005	32

5.3 Interpretation of Results

Laboratory results show that analysed samples contain low amounts of sulfur with the highest sample (BH105/0.15-0.25 collected from shallow fill material) having 0.02 %S which is below the ASSMAC (1998) action criteria for sulfur trail. All other samples reported results below the laboratory detection limit and well below sulfur trail action criteria.

These results indicate that site soils do not meet the ASSMAC (1998) definition of actual ASS (AASS) or potential ASS (PASS) due to the soils containing low levels or no detection of sulfides. Therefore, the preparation of an ASS management plan (ASSMP) is not required.

The measured pH values and net acidity values indicate that site soils are acidic, which should be considered in the design of any future subsurface infrastructure. It is recommended that aggressivity testing (EC, SO₄, CI and resistivity) of site soils is completed to assess exposure classifications and aid appropriate design of any future buried structures.

6 Conclusion

This ASS assessment was completed as part of a due diligence exercise to support the construction of a multi-level storage facility at 11 and 11A Edinburgh Road, Marrickville, NSW. MA understands that the proposed development is not to include a basement, and will not require any significant excavation to achieve design levels. It was therefore, assumed, as part of this assessment, that future works at the site will involve the disturbance of less than 1,000 tonnes of soil material.

The assessment included subsurface investigation works and laboratory assessment of soil samples collected during investigation works.

The results of this assessment found that site soils do not meet the definition of AASS or PASS and that preparation of an ASSMP is not required.

While the soils were not found to meet the definition of AASS or PASS, the measured pH values and net acidity values indicate that site soils are acidic. These findings should be considered in the design of any future subsurface infrastructure.

It is recommended aggressivity testing (EC, SO₄, CI and resistivity) of site soils is completed to assess exposure classifications and aid appropriate design of any future buried structures.

7 Limitations

The recommendations presented in this report include specific issues to be addressed during future planning and construction phases of the project.

In the event that any of the recommendations presented in this report are not implemented, the general recommendations may become inapplicable and Martens & Associates Pty Ltd accept no responsibility whatsoever for the performance of the works undertaken where recommendations are not implemented in full and properly tested, inspected and documented.

Occasionally, sub-surface conditions between and below the completed boreholes or other tests may be found to be different (or may be interpreted to be different) from those expected. Variation can also occur with groundwater conditions, especially after climatic changes. If such differences appear to exist, we recommend that you immediately contact Martens & Associates Pty Ltd.

8 References

- ADG (2022) Geotechnical Brief, referenced project 11-11A Edinburgh Road, Marrickville, NSW. Ref. 25796, dated 18.02.22.
- Acid Sulfate Soil Management Advisory Committee (1998), Acid Sulfate Soil Manual. Referred to as ASSMAC (1998).
- Herbert, C. (1983), Sydney 1:100 000 Geological Sheet 9130, 1st edition, Geological Survey of New South Wales, Sydney.
- Martens and Associates (2022) Geotechnical Assessment, 11 and 11A Edinburgh Road, Marrickville, NSW. Ref. P2108688JR01V01, dated 08/04/2022.
- Qld Natural Resources, Mines and Energy (2004) Acid Sulfate Soils Laboratory Methods Guidelines.
- SLR (2018) Stage 1 Preliminary Site Investigation For Future Mixed Residential/ Commercial Site Re-development Lot 1 in DP607677 and Lot 67 in DP4991 11 & 11A Edinburgh Road, Marrickville NSW. Ref. 610.18174-R01-v1.0, dated 05.07.2018.
- Water Quality Australia (2018) National Acid Sulfate Soils Guidance: National acid sulfate soils sampling and identification methods manual.

Attachment A: Site Plans

0 10 20 30 40 50 m

1:1250 @ A3

Aerial: Nearmap (2022)

Map Title / Figure: Site Overview

Map 01 11 & 11A Edinburgh Road, Marrickville, NSW Engineering Services Acid Sulfate Soils Assessment Sub-Project National Storage C/- LRM Global Pty Ltd 12/04/2022

Мар Site Project Client Date

0 6 12 18 24 30 m

1:500 @ A3

Viewport A Aerial: Nearmap (2022) Contours: NSW Government 1m DEM (2020)

Map Title / Figure: Contours

Map Site Project Sub-Project Client Date

Map 02 11 & 11A Edinburgh Road, Marrickville, NSW Engineering Services Acid Sulfate Soils Assessment National Storage C/- LRM Global Pty Ltd 12/04/2022

1:500 @ A3 Viewport A

Aerial: Nearmap (2022) ASS Risk Mapping: NSW DPIE (1995)

Map Title / Figure: ASS Risk Map

Мар Site Project Sub-Project Client Date

11 & 11A Edinburgh Road, Marrickville, NSW Engineering Services Acid Sulfate Soils Assessment National Storage C/- LRM Global Pty Ltd 12/04/2022

Map 03

0 6 12 18 24 30 m

1:500 @ A3 Viewport A Aerial: Nearmap (2022)

Map Title / Figure: Testing Plan

Map Site Project Sub-Project Client Date

Map 04 11 & 11A Edinburgh Road, Marrickville, NSW Engineering Services Acid Sulfate Soils Assessment National Storage C/- LRM Global Pty Ltd 12/04/2022

Attachment B: Borehole Logs

CLI	ENT	١	National Storage						COMMENCED	24/03/2022	COMPLETED	24/0)3/202	22	2 REF BH101			
PR	OJEC	ст с	T Geotechnical Assessment							MZ	CHECKED	SK	SK				1 05 1	
SIT	E	1	1 & 11A	Edinbu	urgh Road, Marrickville	ə, NS	SW		GEOLOGY	Ashfield Shale	VEGETATION	Nil				1 OF 1 NO. P2108688		
EQI	JIPME	INT			Push tube / Hand auger				LONGITUDE	151.172687	RL SURFACE	6.61	m	AHD				
EXCAVATION DIMENSIONS 2.00 m depth								LATITUDE	-33.908321	ASPECT	Sou	th			SLOPE	<2%		
		Dri	lling		Sampling	_		7		F	ield Material D)escr	iptio	n				
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	Sample or Field test	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL DES	CRIPTION		MOISTURE CONDITION	CONSISTENCY DENSITY		STRU AD OBSE	CTURE AND DITIONAL ERVATIONS	
рт	-		_	<u>0.15</u> 6.45	0.15-0.35/S/1 D 0.15-0.35 m			CI- CH i	CONCRETE	edium plasticity; brown, ç cted.	grey; with gravels;				FILL	IENT		
Ы		untered	-	0.00	0.5-0.7/S/1 D 0.50-0.70 m		\bigotimes										-	
		Not Enco	1	5.70	1.1-1.2/S/1 D 1.10-1.20 m			CI- CH i	CLAY; medium to hi ndurated bands; tra	gh plasticity; red, pale gr ce gravels.	rey; with iron	·	M (>PL)		RESIDU	JAL SOIL		
HA			-		1.4-1.6/S/1 D 1.40-1.60 m									St - VSt			-	
			-	2.00	1.8-2.0/S/1 D 1.80-2.00 m												-	
			- - 3 - - - - -						Target depth reach	ed)							- - - - - - - - - - - - - - - - 	
			4														- - - - - - - - - - - - -	
			- - 6														-	
																	-	
			-														-	
\vdash		I		E	L EXCAVATION LOG T) BE	REA	D IN C	ONJUCTION WI	TH ACCOMPANYING	G REPORT NO	TES A	AND	L ABB	i Reviat	IONS		
(0	ра	art (en:	S s Pty. Ltd.			Suite mail@	MARTENS & 201, 20 George S Phone: (02) 9476 martens.com.au	ASSOCIATES PTY LTI St. Hornsby, NSW 2077 9999 Fax: (02) 9476 8 WEB: http://www.marte	D 7 Australia 3767 ens.com.au			En	gin BO	eerin REH	g Log - OLE	

CL	IENT	I	National Storage						COMMENCED	24/03/2022	COMPLETED	24/03/2022			REF	BH102
PR	OJEC	т	Geotech	nical As	ssessment				LOGGED	MZ	CHECKED	SK				4 95 4
SIT	E		11 & 11A	A Edinb	urgh Road, Marrickvi	le, N	SW		GEOLOGY	Ashfield Shale	VEGETATION	Nil			Sheet PROJECT	1 OF 1 NO. P2108688
EQ	UIPME	NT			Push tube / Hand auger				LONGITUDE	151.173163	RL SURFACE	7.8 m			DATUM	AHD
EXC	CAVAT	ION	DIMENSI	ONS	1.50 m depth		1		LATITUDE	-33.907887	ASPECT	South			SLOPE	<2%
_		Dri	lling		Sampling			z			Field Material D	escript	ion			
r Method	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATIOI	SOIL/RC	OCK MATERIAL DE	ESCRIPTION	MOISTURE	CONDITION CONSISTENCY DENSITY		STRU ADI OBSE	CTURE AND DITIONAL ERVATIONS
	-	Intered	-	0.15 7.65	0.2-0.35/S/1 D 0.20-0.35 m 0.5-0.7/S/1 D			CI-F CH ii	CONCRETE	edium plasticity; brow cted.	n, grey; with gravels;			FILL	1EN I - — — — -	
ΡŢ		Not Encor	- - 1	<u>1.00</u>	0.50-0.70 m		\bigotimes					(>F	1 'L)	PESIDI		
			-	1.25	1.00-1.20 m				LAY; medium to hi	igh plasticity; brown, p 	oale grey; trace grave	els. ·	VSt	-	JAL SUIL	-
AH	$\left \right $		_	6.55 <u>1</u> .50	1.3-1.5/S/1 D 1.30-1.50 m			CI- CH ii	CLAY; medium to hindurated bands; tra	gh plasticity; red, pale ace gravels.	e grey; with iron		Н			
v1 < ChrawingFile>> 2104/2022 16:19 1002.00.04 Daiget Lab and In Situ Tool - DGD Uk: Martens 2.00.2016-11-13 PHF HA				6.55	1.3-1.5/S/1 D 1.30-1.50 m				CLAY; medium to hi ndurated bands; tra- lole Terminated at Target depth reach	igh plasticity; red, pak ice gravels. 1.50 m ed)	e grey; with iron		H			
REHOLE P210868884101-501 IV			7													-
IENS BO			-													-
g MART																
MARTENS 2.00 LIB.GLB LC	(0	Copy	art ight Martens	en & Associate	S Pty. Ltd.			Suite mail@	MARTENS & 201, 20 George S Phone: (02) 9476 martens.com.au	ASSOCIATES PTY St. Hornsby, NSW 20 9999 Fax: (02) 947 WEB: http://www.ma	LTD 077 Australia 76 8767 artens.com.au	1 LO AN	En	gin BO	eerin REH	g Log - OLE

CLIEN	١T	N	lational	Storage	e				COMMENCED	COMMENCED 24/03/2022 COMPLETED 24				24/03/2022 REF BH103					
PROJ	IEC.	тG	Beotechi	nical As	ssessment				LOGGED	MZ	CHECKED	SK				Sheet			
SITE		1	1 & 11A	Edinb	urgh Road, Marrickville	e, NS	SW		GEOLOGY	Ashfield Shale	VEGETATION	Nil				PROJECT	1 OF 1 NO. P2108688		
EQUIF	MEI	ΝT			Push tube / Hand auger				LONGITUDE	151.172931	RL SURFACE	7.1	m			DATUM	AHD		
EXCA	/ATI	ON E	DIMENSI	ONS	2.00 m depth				LATITUDE	-33.908138	ASPECT	Sou	uth			SLOPE	<2%		
		Dril	ling		Sampling			z			Field Material	Desc	riptio	n					
PENETRATION	RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	Sample or Field test	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATIO	SOIL/RO	OCK MATERIAL DE	SCRIPTION		MOISTURE	CONSISTENCY DENSITY	DAVEN	STRUCTURE AND ADDITIONAL OBSERVATIONS			
РТ D1		untered	-	0.15 6.95	0.2-0.3/S/1 D 0.20-0.30 m 0.4-0.5/S/1 D 0.40-0.50 m			CI- CH	CONCRETE FILL; Silty CLAY; me inferred well compac	edium plasticity; browr cted.	n, grey; with gravels		-(≥P <u>L</u>)		FILL	IEN I			
		Not Enco	1	<u>0.90</u> 6.20 1.30	1.0-1.2/S/1 D 1.00-1.20 m			CI- CH	CLAY; medium to hi	igh plasticity; brown, p	ale grey; trace grav	/els.	M (>PL)	St - VSt	RESID	JAL SOIL			
АН			-	5.80	1.4-1.6/S/1 D 1.40-1.60 m			CI- CH	CLAY; medium to hi indurated bands; tra	gh plasticity; red, pale ice gravels.	grey; with iron			VSt			-		
				2.00			REA		Hole Terminated at (Target depth reach	2.00 m ed)	NG REPORT NC	DTES	AND	ABB	REVIAT	IONS			
0	n (c)	Copyri	art ght Martens	en & Associate	S s Pty. Ltd.			Sui mail	MARTENS & / te 201, 20 George S Phone: (02) 9476 @martens.com.au	ASSOCIATES PTY L St. Hornsby, NSW 20 9999 Fax: (02) 9470 WEB: http://www.ma	TD 77 Australia 6 8767 rtens.com.au			En	gin BO	eerin REH	g Log - OLE		

CL	CLIENT National Storage			COMMENCED	24/03/2022	COMPLE	TED	24/03/20	REF BH104									
PR	OJEC	ст	Geotech	nical As	ssessment				LOGGED	MZ	CHECKE	C	sк					
SIT	Ē		11 & 11A	Edinb	urgh Road, Marrickvi	le, N	SW		GEOLOGY	Ashfield Shale	VEGETA	ION	Nil			Sheet PROJECT	1 OF 1 NO. P2108688	
EQ	UIPME	INT			Push tube / Hand auger				LONGITUDE	151.172574	RL SURF	ACE	7.7 m			DATUM	AHD	
EX	CAVAT	TION	DIMENSI	ONS	1.45 m depth				LATITUDE	-33.9079	ASPECT		South			SLOPE	<2%	
		Dri	lling		Sampling	_		z			Field Mate	rial D	escriptio	on I.				
- METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	SOIL/ROCK MATERIAL DESCRIPTION				CONSISTENCY DENSITY	DAVE	STRU AD OBSI	CTURE AND DITIONAL ERVATIONS	
			-	0.15 7.55	0.15-0.3/S/1 D 0.15-0.30 m			CI- CH	CONCRETE FILL; Silty CLAY; mo inferred well compar	edium plasticity; brov sted.	n, grey; with gra	avels;	_	-	FILL	IEN I - — — —		
ΡŢ			-	0.85	0.5-0.7/S/1 D 0.50-0.70 m		\bigotimes						M (>PL)				-
HA			1	<u>1.00</u> 6.70	1.0-1.2/S/1 D 1.00-1.20 m			CI- CH	CLAY; medium to hi indurated bands; tra	gh plasticity; red, pa ce gravels.	e grey; with iror			VSt - H	RESID	JAL SOIL		
		wollul		1.45	1.30-1.45 m				Hole Terminated at (Target depth reach	1.45 m ed)								
			2-															-
			-															-
_			-															-
3 2.00 2016-11-13																		-
2016-11-13 Prj: Martens			-															-
Lib: Martens 2.002			4															-
In Situ Tool - DGD			-															-
4 Datgel Lab and			5															-
16:18 10:02:00.0			-															-
ie>> 21/04/20/22			6-															_
5PJ < <drawingf.< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></drawingf.<>			-															-
101-BH107V01.C			7-															-
E P210868BH			-															-
RTENS BOREHO																		
Log MA	EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS																	
MARTENS 2.00 LIB.GLB	MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au																	

CL	CLIENT National Storage					COMMENCED	24/03/2022	COMPLETED	24/03	3/202	22	REF BH105			
PF	ROJEC	т	Geotech	nical A	ssessment				LOGGED	МН	CHECKED	SK			
SI	TE		11 & 11A	Edinb	urgh Road, Marrickville	e, NS	W		GEOLOGY	Ashfield Shale	VEGETATION	Nil			PROJECT NO. P2108688
EQ	UIPME	INT			4WD ute-mounted hydrau	ılic dri	il rig		LONGITUDE	151.173313	RL SURFACE	6.3 m	n		DATUM AHD
EX	CAVAT	TION	DIMENSI	SNC	Ø100 mm x 7.50 m depth				LATITUDE	-33.908395	ASPECT	Sout	h		SLOPE <5%
		Dr	illing		Sampling	\square		7		F	ield Material D	escri	ptio	n	
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RO	OCK MATERIAL DES	CRIPTION			CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
			-	<u>0.10</u> 6.20	0.11-0.25/S/1 D 0.11-0.25 m		\bigotimes	СН	CONCRETE FILL: Silty CLAY; me inferred well compac	edium plasticity; brown, b cted.	black; trace gravel				PAVEMENT
	L			<u>1.00</u>	0.5-0.7/S/1 D 0.50-0.70 m 0.6-0.7/S/1 D 0.60-0.70 m 0.8-1.0/S/1 D 0.80-1.00 m										
			-	0.00	1.0-1.4/S/1 D 1.00-1.40 m SPT 1.05 m 2,2,4 N=6 1.2-1.3/S/1 1.20-1.30 m			СН	Silty CLAY; high pla	sticity; reddish brown.				F 	
	M		2	<u>2.10</u> 4.20	1.8-2.0/S/1 D 1.80-2.00 m				Becoming grey and	reddish brown.				St - VSt	
2				2.50 3.80	SPT 2.50 m 5,10,10 N=20 2.5-3.0/S/1 D 2.50-3.00 m			CI- CH	Silty CLAY; medium brown.	to high plasticity; grey, y					-
ADN	M-H	ot Encountered	-									(•	M <pl)< td=""><td></td><td>-</td></pl)<>		-
		z	4	<u>4.00</u> 2.30	SPT 4.00 m 5,9,12 N=21 4.00-4.4/S/1 D 4.00-4.4/S/1 D 4.4-4.6/S/1 D 4.4-4.60 m			CI- CH	Silty CLAY; medium	to high plasticity; grey, y	ellow and brown.			VSt	
	н		5		4.8-5.1/S/1 D 4.80-5.10 m										- -
			6		5F1 5.50 m 6,10,11 N=21 5.5-5.9/S/1 D 5.50-5.90 m										
	м		-	6.40 -0.10	6.3-6.5/S/1 D 6.30-6.50 m		×		SHALE; highly weat very low to low stren	hered; dark grey, dark b ligth.	rown, brown; infer	red			WEATHERED ROCK
AD/T	н		7	7.00 -0.70 7.50	-				SHALE; highly weat strength.	hered; brown, dark brow	n; inferred low				-
	Hole Terminated at 7.50 m (Target depth reached)														
-			I		EXCAVATION LOG TO) BE	REA		CONJUCTION WI		GREPORT NO	TES A	ND	ABB	REVIATIONS
((r	n C) Cop	art yright Martens	en & Associate	S Is Pty. Ltd.			Sui mail	MARTENS & / te 201, 20 George S Phone: (02) 9476 @martens.com.au	ASSOCIATES PTY LTI St. Hornsby, NSW 2077 9999 Fax: (02) 9476 8 WEB: http://www.marte	D / Australia 3767 ens.com.au			En	gineering Log - BOREHOLE

CLI	CLIENT National Storage				COMMENCED 24/03/2022 COMPLETED				24/03/2022 REF BH107				
PRO	OJEC	т	Geotech	nnical As	ssessment			LOGGED	мн	CHECKED	SK		
SITI	E		11 & 11	A Edinb	urgh Road, Marrickville,	NSW		GEOLOGY	Ashfield Shale	VEGETATION	Nil		PROJECT NO. P2108688
EQL	IPME	NT			4WD ute-mounted hydraul	ic dril rig		LONGITUDE	151.173612	RL SURFACE	8 m		DATUM AHD
EXC	AVAT	ION	DIMENS	IONS	Ø100 mm x 6.50 m depth			LATITUDE	-33.907913	ASPECT	South		SLOPE <2%
		Dr	illing	1	Sampling				I	Field Material D	escriptio	n	
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	SOIL/ROCK MATERIAL DESCRIPTION			CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
			-	<u>0.15</u> 7.85	0.15-0.25/S/1 D 0.15-0.25 m 0.3-0.4/S/1 D 0.30-0.40 m		SM	FILL: Silty SAND; fi gravels.	ne to medium grained; g	rey, dark grey; tra	ce M	-	FILL
	L		1	0.80 7.20	0.8-0.9/S/1 D 0.80-0.90 m SPT 1.00 m 3,1,3 N=4		SC	FILL: Silty Sandy C	LAY; high plasticity; brow	vn, dark grey.		_	
- - 1.30 N=4 1.0-1.4/S/1 D I.0-1.4/S/1 D - - - - - CH - - - - - CH - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <							СН	Silty CLAY; high pla indurated bands. Iron indurated band	isticity; grey, reddish bro	wn; with iron		F	RESIDUAL SOIL
			2-	-	SPT 2.50 m							 St	
AD/V	мц		3-	<u>3.00</u> 5.00	7.8,12 N=20 2.5-2.9/S/1 D 2.50-2.90 m			Reddish brown and	grey.		M (<pl< td=""><td>)</td><td></td></pl<>)	
	IVI-CI		-	-	3.5-3.9/S/1 D 3.50-3.90 m							St and VSt	
			4	<u>4.30</u> 3.70	SPT 4.00 m 6,8,14 N=22 4,0-4.4/S/1 D 4.00-4.40 m	x x x x		Iron indurated band	ls.				
			5	<u>5.00</u> 3.00	4.7-5.0/S/1 D 4.70-5.00 m 5.1-5.3/S/1 D	× · · · · · · · · · · · · · · · · · · ·		SHALE; highly wea	thered; dark grey, dark b	prown; inferred ver	y		
	н			-	5.10-5.30 m SPT 5.50 m 8,Double Bounce SPT Refusal. 5.5-5.9/S/1 D			ion auchgut.					
AD/T	м-н		6	6.00 2.00 6.50	6.1-6.3/S/1 D 6.10-6.30 m			SHALE; highly wea very low to low stree	thered; brown, dark grey ngth.	and grey; inferred			6.00: V-bit refusal at 6.0m.
			7	-				Hole Terminated at	6.50 m				6.50: TC-bit refusal on inferred very low low strength shale.
			-	-	EXCAVATION LOG TO	BE REA	D IN C	ONJUCTION WI	TH ACCOMPANYING	G REPORT NO	TES AND	ABB	REVIATIONS
(0) Copy	art yright Martens	en & Associate	S s Pty. Ltd.		Sui mail(MARTENS & e 201, 20 George S Phone: (02) 9476 @martens.com.au	ASSOCIATES PTY LT St. Hornsby, NSW 2073 § 9999 Fax: (02) 9476 WEB: http://www.mart	D 7 Australia 8767 ens.com.au		En	gineering Log - BOREHOLE

Attachment C: Laboratory Summary Table

ASS Laboratory Test Results Interpretation

Method based on Acid Sulfate Soil Manual (ASSMAC, 1998) Method ST-50 V05 Revised 30.04.2018

martens

Suite 201, 20 George Street, Hornsby, NSW 2077 Ph: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au, www.martens.com.au

PROJECT DETAILS												
Client:	National Storag	e									Page:	1 of 1
Project:	Acid Sulfate Soil	Assessment									Assessment Date:	12/04/2022
Sampling Site:	11 and 11A Edir	nburgh Road, Marrickville, NSW									Job Number:	P2208688
Sample Date:	30/03/2022										Sampled By:	DS
SAMPLE DETAILS / TEST	RESULTS											
			pH Measurements	Sulf	ur Trail	Acid Trail			ASS - Acid Ba			
Sample Location	Sample Depth (mbgl)	Inferred Texture	pH _{kci}	Chromium Reducible Sulfur	e Chromium Reducible Sulfur (acidity units)	Titratable Actual Acidity	Titratable Actual Acidity (sulfur units)	Net Acidity (acidity units)	Net Acidity (sulfur units)	Net Acidity excluding ANC (acidity units)	Net Acidity excluding ANC (sulfur units)	Liming Rate
			pH Units	%S	mole H+/t	mole H+/t	%S	mole H+/t	%S	mole H+/t	%S	kg/t
ASSMAC Criteria <1000 t	disturbance	Fine	<3.5	0.1	62	62	0.1	62	0.1	62	0.1	
		Medium	<3.5	0.06	36	36	0.06	36	0.06	36	0.06	
		Coarse	<3.5	0.03	18	18	0.03	18	0.03	18	0.03	
BH101	1.4 -1.6	Fine	3.9	0.007	4	74	0.12	84	0.14	84	0.14	6.3
BH102	1.3 - 1.5	Fine	4.4	0.006	4	40	0.06	46	0.074	46	0.074	3.5
BH103	1.5 - 1.7	Fine	4	0.006	4	56	0.09	63	0.1	63	0.1	4.7
511100	1.8 - 2.0	Fine	4	<0.005	<3	86	0.14	89	0.14	89	0.14	6.7
BH104	1.0 - 1.2	Fine	6.9	<0.005	<3	<5	<0.01	<5	<0.005	<5	<0.005	<0.75
	0.15 - 0.25	Fine	5.6	0.02	11	<5	<0.01	15	0.025	15	0.025	1.2
BH105	2.5 - 3.0	Fine	4	0.007	5	75	0.12	100	0.06	100	0.16	7.6
	4.8 - 5.1	Fine	4	<0.005	<3	49	0.08	51	0.081	51	0.081	3.8
	1.7 - 2.0	Fine	3.8	<0.005	<3	86	0.14	89	0.14	89	0.14	6.7
BH106	3.0 - 3.2	Fine	3.8	<0.005	<3	49	0.08	50	0.08	50	0.08	3.8
	5.1 - 5.3	Fine	3.9	<0.005	<3	49	0.08	52	0.083	52	0.083	3.9
	0.3 - 0.4	Coarse	9.9	<0.005	<3	<5	<0.01	<5	<0.005	<5	<0.005	<0.75
BH107	2.5 - 2.9	Fine	3.8	<0.005	<3	48	0.08	49	0.078	49	0.078	3.7
	4.7 - 5.0	Fine	4.2	<0.005	<3	27	0.04	32	0.052	32	0.052	2.4
Notes:												
1. Material type based on fie	eld texture assessme	ent or laboratory report.										

2. Total Actual Acidity. Highlighted values exceed ASSMAC (1998) action criteria.

3. Chromium Reducible Sulfur. Highlighted values exceed ASSMAC (1998) action criteria.

4. Percentage net acid soluble sulfur. Highlighted values exceed ASSMAC (1998) action criteria.

5. From laboratory test results (refer to laboratory test certificates). Calculated using a FOS of 1.5.

Attachment D: Laboratory Documentation

- •

Coc reid (638

SOIL ANALYSIS CHAIN OF CUSTODY FORM

. .

					Ac	lditional Tes	ting									
P2208688	3: Edint	ourgh Stree	et, Marrie	ckville, N	ISW				_							
Martens Contact Officer Robert Mehaffey Contact Email rmehaffey@martens.com.au										com.au						
Sample	Date	24	/03/202	22		Dispatch Dat	e 2.	5/03/20)22		Turnarou	nd Time		standard .		
Our Refe	rence	P2	22086880	COC02V	/01		SI ()	hipping X)	Meth	od		Post	с	ourier	x	
On Ice (X)						Oth	ner (X)				•					
	-					Laboratory	/									
EnviroLo	dt						•									
12 Ashle	ey Stre	et, Chats	wood	_		1			_							
Name	Şamp	ole Receip	pt	Phone	, ,	9910 6200		Fax			Email	samplerec	eipt@envir	olabservic	es.con	ก.au
ease Send Report By (X) Post Fax Email X								mail Ada	dress	<u>rmet</u> <u>gtay</u> <u>mart</u>	natfey@ma lor@marter tens@esdat	rtens.com.c 1s.com.au .com.au	<u>IU</u>			
	P2208688 Robert M Sample I Our Refe On Ice (2 EnviroLc 12 Ashle Name Post	P2208688: Edint Robert Mehaffe Sample Date Our Reference On Ice (X) EnviroLab 12 Ashley Stre Name Samp Post	P2208688: Edinburgh Street Robert Mehaffey Sample Date 24 Our Reference P2 On Ice (X) X EnviroLab 12 Ashley Street, Chats Name Sample Receit Post Fax	P2208688: Edinburgh Street, Marri Robert Mehaffey Sample Date 24/03/202 Our Reference P2208688 On Ice (X) X No EnviroLab 12 Ashley Street, Chatswood Name Name Sample Receipt Fax	P2208688: Edinburgh Street, Marrickville, N Robert Mehaffey Sample Date 24/03/2022 Our Reference P2208688COC02N On Ice (X) X No Ice (X) EnviroLab 12 Ashley Street, Chatswood Name Sample Receipt Phone Post Fax Email	Ac P2208688: Edinburgh Street, Marrickville, NSW Robert Mehaffey Sample Date 24/03/2022 Our Reference P2208688COC02V01 On Ice (X) X No Ice (X) EnviroLab 12 Ashley Street, Chatswood Name Sample Receipt Phone Sample Receipt Post Fax Email X	Additional res P2208688: Edinburgh Street, Marrickville, NSW Robert Mehaffey Sample Date 24/03/2022 Dispatch Dat Our Reference P2208688COC02V01 Laboratory On Ice (X) Ott Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"Colspa="2"Colspa="2"Colspa="2"Colspan="2"Colspan="2"Colspan="2"Colspa="	Additional resting P2208688: Edinburgh Street, Marrickville, NSW Robert Mehaffey C Sample Date 24/03/2022 Dispatch Date 2 Our Reference P2208688COC02V01 S C Our Reference P2208688COC02V01 S Colspan="2">C Our Reference P2208688COC02V01 S C Colspan="2">C On Ice (X) Other (X) Colspan="2">Colspan="2">C COLSPAN Laboratory EnviroLab 12 Ashley Street, Chatswood I Post Fax Email X Reporting E Post Fax Email X Reporting E	Additional resining P2208688: Edinburgh Street, Marrickville, NSW Contact Sample Date 24/03/2022 Dispatch Date 25/03/20 Our Reference P2208688COC02V01 Shipping (X) On Ice (X) X No Ice (X) Other (X) Laboratory EnviroLab 12 Ashley Street, Chatswood I Name Sample Receipt Phone 9910 6200 Fax Post Fax Email X Reporting Email Add	Additional resting P2208688: Edinburgh Street, Marrickville, NSW Contact Email Sample Date 24/03/2022 Dispatch Date 25/03/2022 Our Reference P2208688COC02V01 Shipping Meth (X) Our Reference P2208688COC02V01 Shipping Meth (X) On Ice (X) Other (X) Laboratory EnviroLab 12 Ashley Street, Chatswood I Name Sample Receipt Phone 9910 6200 Fax Post Fax Email X Reporting Email Address	Additional resining P2208688: Edinburgh Street, Marrickville, NSW Contact Email Sample Date 24/03/2022 Dispatch Date 25/03/2022 Our Reference P2208688C OC02V01 Shipping Method (X) On Ice (X) No Ice (X) Other (X) EnviroLab 12 Ashley Street, Chatswood I Name Sample Receipt Phone 9910 6200 Fax rmel gtoy Post Fax Email X Reporting Email Address gtoy	Additional resulting P2208688: Edinburgh Street, Marrickville, NSW Contact Email rmehaffe Sample Date 24/03/2022 Dispatch Date 25/03/2022 Turnarour Our Reference P2208688COC02V01 Shipping Method (X) On Ice (X) X No Ice (X) Other (X) Laboratory EnviroLab 12 Ashley Street, Chatswood i Email Marie Sample Receipt Phone 9910 6200 Fax Email Post Fax Email X Reporting Email Address gtaylor@marter	Additioned resining P2208688: Edinburgh Street, Marrickville, NSW Contact Email mehaffey@martens. Sample Date 24/03/2022 Dispatch Date 25/03/2022 Turnaround Time Our Reference P2208688COC02V01 Shipping Method (X) Hand On Ice (X) X No Ice (X) Other (X) Hand Laboratory EnviroLab 12 Ashley Street, Chatswood I Name Sample Receipt Phone 9910 6200 Fax Email samplerec Post Fax Email X Reporting Email Address mathaddress mathaffey@martens.com.ou	Ageinionial resining P2208688: Edinburgh Street, Marrickville, NSW Robert Mehaffey Contact Email rmehaffey@martens.com.au Sample Date 24/03/2022 Turnaround Time Our Reference P2208688C OC02V01 Shipping Method (X) Hand Post On Ice (X) X No Ice (X) Other (X) Laboratory EnviroLab 12 Ashley Street, Chatswood i Post Fax Email X Reporting Email Address Post Fax Email X Reporting Email Address	Additional resining P2208688: Edinburgh Street, Marrickville, NSW Contact Email rmehaffey@martens.com.au Sample Date 24/03/2022 Dispatch Date 25/03/2022 Turnaround Time standard Our Reference P2208688COC02V01 Shipping Method (X) Other (X) Fost P2208688COC02V01 Shipping Method (X) Other (X) Post C Our Reference P2208688COC02V01 Shipping Method (X) Other (X) Fost Fost Fost Fost Email Post Email Post Email sample Receipt Phone 9910 6200 Fax Email sample Receipt Phone 9910 6200 Fax Email sample Receipt Phone 9910 6200 Fax Email sample Receipt Phone Sample	Additional resting P2208688: Edinburgh Street, Marrickville, NSW Robert Mehaffey rmehaffey@martens.com.au Sample Date 24/03/2022 Dispatch Date 25/03/2022 Turnaround Time standard Our Reference P2208688COC02V01 Shilpping Method (X) Hand Post Courier Our Reference P2208688COC02V01 Shilpping Method (X) Hand Post Courier On Ice (X) X No Ice (X) Courier Laboratory EnviroLab I Courier Post Fax Email sample Receipt Phone 9910 6200 Fax Email sample Receipt @envirolabservices.com.au Post Fax Email sample Receipt @envirolabservices.com.au Post Fax Email ad

.

Sample ID	Sample type	SCr suite	Combo 6a	8HM	TRH	BTEXN	Hold
BH101/1.4 - 1.6	Zip lock	X					X
2 BH102/1.4 - 1.6	. Zip lock	X .			1		X
3 BH103/1.5-,1.7	Żip lock	X			Envirolab Services		X 🚁
4 BH103/1.8-2.0	Zip lock	Х		EIM .JURE	Tz Asniey St Chotomood NCI*12057		X :
5 BH104/1.0 1.2	Zip lock	X			Ph: (02) 9910 6200		
6 BH105/2.5 - 3.0	Ziplock	Χ		Job No:	201000		X
7 BH105/4.8 - 5.1	Zip lock	X			211932		•
BH106/1.7 - 2.0	Zip lock	X		Date Rece	wed: 25/2/22	_	x
9 BH106/3.0-3.2	Ziplock	X		Time Perce	ived 1-1-	_	
10 BH106/5.1 - 5.3	Zip lock	X		Bossived	19657		X
II BH107/2.5-2.9	Zip lock	X	•		utrachiont-		<u>x</u>
12 BH107/4.7 - 5.0	Zip lock	X		temp. Co.	I'C.		X
							X
13 BH101/0.15-0.3	Jar	•	X	Security: 1	DIACUBIOKENINGINE		
19 BH101/0.5-0.7	Jar		4				X
15 BH102/0.2-0.3	Jar		X P				

7

Head Office Suite 201, Level 2, 20 George Street Hornsby NSW 2077, Australia Ph 02 9476 9999 Fax 02 9476 8767

> mail@martens.com.au > www.martens.com.au MARTENS & ASSOCIATES P/L ABN 85 070 240 890 ACN 070 240 890

SOIL ANALYSIS CHAIN OF CUSTODY

4

``

, ,

Sample ID	Sample type	SCr suite	Combo 6a	внм	TRH	BTEXN	Hold
16 BH103/0.2-0.3	Jar	•	X .				
17 BH103/0.4 - 0.5	Jar		μ				X
/B BH105/0.15 - 0.25	 Jar	X				_	
19 BH106/0.2-0.3	Jar						X
20 BH106/0.5-0.6	Jar '						X
21 BH106/1.0 - 1.1	Jar						X
22 BH107/0.3-0.4	Jar	<u> </u>					
23 BH107/0.8-0.9	Jar						X
24 DUP01	Jar	· · ·		X			
2.5 Trip spike	Vial					x	
26 Trip blank	Vial				X		

I

i

Т

',

¥ 2919520,-25/3/22

· · · ·

ł

T

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 291952

Client Details	
Client	Martens & Associates Pty Ltd
Attention	Robert Mehaffey
Address	Suite 201, 20 George St, Hornsby, NSW, 2077

Sample Details	
Your Reference	P2208688: Edinburgh Street, Marrickville, NSW
Number of Samples	26 Soil
Date samples received	25/03/2022
Date completed instructions received	25/03/2022

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

01/04/2022

Please refer to the last page of this report for any comments relating to the results.

Report Details

Date of Issue

Date results requested by

01/04/2022

NATA Accreditation Number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Analyst: Panika Wongchanda Authorised by Asbestos Approved Signatory: Lucy Zhu

Results Approved By

Dragana Tomas, Senior Chemist Hannah Nguyen, Metals Supervisor Lucy Zhu, Asbestos Supervisor Priya Samarawickrama, Senior Chemist Steven Luong, Senior Chemist Thomas Beenie, Lab Technician Authorised By

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		291952-13	291952-15	291952-16	291952-25	291952-26
Your Reference	UNITS	BH101/0.15 -0.3	BH102/0.2 -0.3	BH103/0.2 -0.3	Trip spike	Trip blank
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/03/2022	29/03/2022	29/03/2022	29/03/2022	29/03/2022
Date analysed	-	29/03/2022	29/03/2022	29/03/2022	29/03/2022	29/03/2022
TRH C6 - C9	mg/kg	<25	<25	<25	[NA]	<25
TRH C6 - C10	mg/kg	<25	<25	<25	[NA]	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	[NA]	[NA]
Benzene	mg/kg	<0.2	<0.2	<0.2	100%	[NA]
Toluene	mg/kg	<0.5	<0.5	<0.5	100%	[NA]
Ethylbenzene	mg/kg	<1	<1	<1	100%	[NA]
m+p-xylene	mg/kg	<2	<2	<2	100%	[NA]
o-Xylene	mg/kg	<1	<1	<1	100%	[NA]
Naphthalene	mg/kg	<1	<1	<1	[NA]	[NA]
Total +ve Xylenes	mg/kg	<1	<1	<1	[NA]	[NA]
Surrogate aaa-Trifluorotoluene	%	83	93	97	102	[NA]

svTRH (C10-C40) in Soil				
Our Reference		291952-13	291952-15	291952-16
Your Reference	UNITS	BH101/0.15 -0.3	BH102/0.2 -0.3	BH103/0.2 -0.3
Type of sample		Soil	Soil	Soil
Date extracted	-	29/03/2022	29/03/2022	29/03/2022
Date analysed	-	30/03/2022	30/03/2022	30/03/2022
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50
Surrogate o-Terphenyl	%	101	95	99

PAHs in Soil				
Our Reference		291952-13	291952-15	291952-16
Your Reference	UNITS	BH101/0.15 -0.3	BH102/0.2 -0.3	BH103/0.2 -0.3
Type of sample		Soil	Soil	Soil
Date extracted	-	29/03/2022	29/03/2022	29/03/2022
Date analysed	-	30/03/2022	30/03/2022	30/03/2022
Naphthalene	mg/kg	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	0.2
Acenaphthene	mg/kg	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.3	<0.1	0.7
Anthracene	mg/kg	0.1	<0.1	0.2
Fluoranthene	mg/kg	0.6	<0.1	1.7
Pyrene	mg/kg	0.6	<0.1	1.7
Benzo(a)anthracene	mg/kg	0.4	<0.1	1.5
Chrysene	mg/kg	0.4	<0.1	1.2
Benzo(b,j+k)fluoranthene	mg/kg	0.6	<0.2	2.2
Benzo(a)pyrene	mg/kg	0.3	<0.05	1.4
Indeno(1,2,3-c,d)pyrene	mg/kg	0.2	<0.1	0.7
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	0.3
Benzo(g,h,i)perylene	mg/kg	0.2	<0.1	0.9
Total +ve PAH's	mg/kg	3.7	<0.05	13
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	2.2
Benzo(a)pyrene TEQ calc(half)	mg/kg	0.5	<0.5	2.2
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	0.6	<0.5	2.2
Surrogate p-Terphenyl-d14	%	79	78	80

Organochlorine Pesticides in soil				
Our Reference		291952-13	291952-15	291952-16
Your Reference	UNITS	BH101/0.15 -0.3	BH102/0.2 -0.3	BH103/0.2 -0.3
Type of sample		Soil	Soil	Soil
Date extracted	-	29/03/2022	29/03/2022	29/03/2022
Date analysed	-	30/03/2022	30/03/2022	30/03/2022
alpha-BHC	mg/kg	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1
Surrogate TCMX	%	78	75	76

Organophosphorus Pesticides in Soil				
Our Reference		291952-13	291952-15	291952-16
Your Reference	UNITS	BH101/0.15 -0.3	BH102/0.2 -0.3	BH103/0.2 -0.3
Type of sample		Soil	Soil	Soil
Date extracted	-	29/03/2022	29/03/2022	29/03/2022
Date analysed	-	30/03/2022	30/03/2022	30/03/2022
Dichlorvos	mg/kg	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1
Surrogate TCMX	%	78	75	76

PCBs in Soil				
Our Reference		291952-13	291952-15	291952-16
Your Reference	UNITS	BH101/0.15 -0.3	BH102/0.2 -0.3	BH103/0.2 -0.3
Type of sample		Soil	Soil	Soil
Date extracted	-	29/03/2022	29/03/2022	29/03/2022
Date analysed	-	30/03/2022	30/03/2022	30/03/2022
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1
Surrogate TCMX	%	78	75	76

Acid Extractable metals in soil						
Our Reference		291952-13	291952-15	291952-16	291952-24	291952-27
Your Reference	UNITS	BH101/0.15 -0.3	BH102/0.2 -0.3	BH103/0.2 -0.3	DUP01	BH101/0.15 –0.3 - [TRIPLICATE]
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	30/03/2022	30/03/2022	30/03/2022	30/03/2022	30/03/2022
Date analysed	-	30/03/2022	30/03/2022	30/03/2022	30/03/2022	30/03/2022
Arsenic	mg/kg	10	<4	7	<4	10
Cadmium	mg/kg	<0.4	<0.4	0.7	<0.4	<0.4
Chromium	mg/kg	9	8	18	8	6
Copper	mg/kg	22	2	94	7	17
Lead	mg/kg	62	11	1,700	25	120
Mercury	mg/kg	0.2	<0.1	0.3	<0.1	0.1
Nickel	mg/kg	12	2	12	2	12
Zinc	mg/kg	51	6	1,400	27	27

Moisture					
Our Reference		291952-13	291952-15	291952-16	291952-24
Your Reference	UNITS	BH101/0.15 -0.3	BH102/0.2 -0.3	BH103/0.2 -0.3	DUP01
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	29/03/2022	29/03/2022	29/03/2022	29/03/2022
Date analysed	-	30/03/2022	30/03/2022	30/03/2022	30/03/2022
Moisture	%	23	11	19	11

Asbestos ID - soils				
Our Reference		291952-13	291952-15	291952-16
Your Reference	UNITS	BH101/0.15 –0.3	BH102/0.2 -0.3	BH103/0.2 -0.3
Type of sample		Soil	Soil	Soil
Date analysed	-	30/03/2022	30/03/2022	30/03/2022
Sample mass tested	g	Approx. 40g	Approx. 45g	Approx. 40g
Sample Description	-	Grey coarse- grained soil & rocks	Brown clayey soil & rocks	Brown coarse- grained soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected

Chromium Suite						
Our Reference		291952-1	291952-2	291952-3	291952-4	291952-5
Your Reference	UNITS	BH101/1.4 -1.6	BH102/1.4 -1.6	BH103/1.5 –1.7	BH103/1.8 –2.0	BH104/1.0 -1.2
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	30/03/2022	30/03/2022	30/03/2022	30/03/2022	30/03/2022
Date analysed	-	30/03/2022	30/03/2022	30/03/2022	30/03/2022	30/03/2022
pH _{kcl}	pH units	3.9	4.4	4.0	4.0	6.9
s-TAA pH 6.5	%w/w S	0.12	0.06	0.09	0.14	<0.01
TAA pH 6.5	moles H ⁺ /t	74	40	56	86	<5
Chromium Reducible Sulfur	%w/w	0.007	0.006	0.006	<0.005	<0.005
a-Chromium Reducible Sulfur	moles H ⁺ /t	4	4	4	<3	<3
S _{HCI}	%w/w S	0.049	0.049	0.044	0.053	[NT]
S _{KCI}	%w/w S	0.039	0.044	0.038	0.053	[NT]
SNAS	%w/w S	0.010	0.005	0.006	<0.005	[NT]
ANCBT	% CaCO₃	[NT]	[NT]	[NT]	[NT]	0.50
S-ANC _{BT}	%w/w S	[NT]	[NT]	[NT]	[NT]	0.16
s-Net Acidity	%w/w S	0.14	0.074	0.10	0.14	<0.005
a-Net Acidity	moles H ⁺ /t	84	46	63	89	<5
Liming rate	kg CaCO₃ /t	6	3	5	7	<0.75
a-Net Acidity without ANCE	moles H+ /t	84	46	63	89	<5
Liming rate without ANCE	kg CaCO₃ /t	6.3	3.5	4.7	6.7	<0.75
s-Net Acidity without ANCE	%w/w S	0.14	0.074	0.10	0.14	<0.005

Chromium Suite					_	
Our Reference		291952-6	291952-7	291952-8	291952-9	291952-10
Your Reference	UNITS	BH105/2.5 –3.0	BH105/4.8 –5.1	BH106/1.7 –2.0	BH106/3.0 –3.2	BH106/5.1-5.3
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	30/03/2022	30/03/2022	30/03/2022	30/03/2022	30/03/2022
Date analysed	-	30/03/2022	30/03/2022	30/03/2022	30/03/2022	30/03/2022
pH _{kcl}	pH units	4.0	4.0	3.8	3.8	3.9
s-TAA pH 6.5	%w/w S	0.12	0.08	0.14	0.08	0.08
TAA pH 6.5	moles H ⁺ /t	75	49	86	49	49
Chromium Reducible Sulfur	%w/w	0.007	<0.005	<0.005	<0.005	<0.005
a-Chromium Reducible Sulfur	moles H ⁺ /t	5	<3	<3	<3	<3
S _{HCI}	%w/w S	0.061	0.024	0.018	0.031	0.025
SKCI	%w/w S	0.028	0.022	0.017	0.031	0.021
Snas	%w/w S	0.033	<0.005	<0.005	<0.005	<0.005
ANC _{BT}	% CaCO₃	[NT]	[NT]	[NT]	[NT]	[NT]
s-ANC _{BT}	%w/w S	[NT]	[NT]	[NT]	[NT]	[NT]
s-Net Acidity	%w/w S	0.16	0.081	0.14	0.080	0.083
a-Net Acidity	moles H+ /t	100	51	89	50	52
Liming rate	kg CaCO₃ /t	7.6	4	7	4	4
a-Net Acidity without ANCE	moles H ⁺ /t	100	51	89	50	52
Liming rate without ANCE	kg CaCO₃ /t	7.6	3.8	6.7	3.8	3.9
s-Net Acidity without ANCE	%w/w S	0.16	0.081	0.14	0.080	0.083

Chromium Suite				_	
Our Reference		291952-11	291952-12	291952-18	291952-22
Your Reference	UNITS	BH107/2.5 –2.9	BH107/4.7 -5.0	BH105/0.15 – 0.25	BH107/0.3 –0.4
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	30/03/2022	30/03/2022	30/03/2022	30/03/2022
Date analysed	-	30/03/2022	30/03/2022	30/03/2022	30/03/2022
pH kcl	pH units	3.8	4.2	5.6	9.9
s-TAA pH 6.5	%w/w S	0.08	0.04	<0.01	<0.01
TAA pH 6.5	moles H ⁺ /t	48	27	<5	<5
Chromium Reducible Sulfur	%w/w	<0.005	<0.005	0.02	<0.005
a-Chromium Reducible Sulfur	moles H+/t	<3	<3	11	<3
S _{HCI}	%w/w S	0.039	0.032	[NT]	[NT]
SKCI	%w/w S	0.036	0.025	[NT]	[NT]
Snas	%w/w S	<0.005	0.007	[NT]	[NT]
ANC _{BT}	% CaCO₃	[NT]	[NT]	[NT]	16
s-ANC _{BT}	%w/w S	[NT]	[NT]	[NT]	5.1
s-Net Acidity	%w/w S	0.078	0.052	0.025	<0.005
a-Net Acidity	moles H+/t	49	32	15	<5
Liming rate	kg CaCO₃ /t	4	2	1	<0.75
a-Net Acidity without ANCE	moles H+/t	49	32	15	<5
Liming rate without ANCE	kg CaCO₃ /t	3.7	2.4	1.2	<0.75
s-Net Acidity without ANCE	%w/w S	0.078	0.052	0.025	<0.005

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Inorg-068	Chromium Reducible Sulfur - Hydrogen Sulfide is quantified by iodometric titration after distillation to determine potential acidity. Net acidity including ANC has a safety factor of 1.5 applied. Neutralising value (NV) of 100% is assumed for liming rate. Based on National acid sulfate soils identification and laboratory methods manual June 2018. The recommendation that the SHCL concentration be multiplied by a factor of 2 to ensure retained acidity is not underestimated, has not been applied in the SHCL results reported.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.

Method ID	Methodology Summary
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:-
	 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" li="" may="" most="" not="" pahs="" positive="" pql.="" present.<="" teq="" teqs="" that="" the="" this="" to=""> 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" li="" more="" negative="" pahs="" pql.<="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""> 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" li="" mid-point="" most="" pql.="" stipulated="" the=""> Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs </pql></pql></pql>
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes

QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil					Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]
Date extracted	-			29/03/2022	13	29/03/2022	29/03/2022		29/03/2022	[NT]
Date analysed	-			29/03/2022	13	29/03/2022	29/03/2022		29/03/2022	[NT]
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	13	<25	<25	0	91	[NT]
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	13	<25	<25	0	91	[NT]
Benzene	mg/kg	0.2	Org-023	<0.2	13	<0.2	<0.2	0	98	[NT]
Toluene	mg/kg	0.5	Org-023	<0.5	13	<0.5	<0.5	0	96	[NT]
Ethylbenzene	mg/kg	1	Org-023	<1	13	<1	<1	0	85	[NT]
m+p-xylene	mg/kg	2	Org-023	<2	13	<2	<2	0	87	[NT]
o-Xylene	mg/kg	1	Org-023	<1	13	<1	<1	0	89	[NT]
Naphthalene	mg/kg	1	Org-023	<1	13	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	93	13	83	81	2	97	[NT]

QUALITY CO	RH (C10	-C40) in Soil			Du	Spike Recovery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date extracted	-			29/03/2022	13	29/03/2022	29/03/2022		29/03/2022	
Date analysed	-			30/03/2022	13	30/03/2022	30/03/2022		30/03/2022	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	13	<50	<50	0	94	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	13	<100	<100	0	99	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	13	<100	<100	0	121	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	13	<50	<50	0	94	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	13	<100	<100	0	99	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	13	<100	<100	0	121	
Surrogate o-Terphenyl	%		Org-020	98	13	101	98	3	107	[NT]

QUALIT		Du	Spike Recovery %							
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date extracted	-			29/03/2022	13	29/03/2022	29/03/2022		29/03/2022	
Date analysed	-			30/03/2022	13	30/03/2022	30/03/2022		30/03/2022	
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	13	<0.1	<0.1	0	80	
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	13	<0.1	<0.1	0	[NT]	
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	13	<0.1	<0.1	0	81	
Fluorene	mg/kg	0.1	Org-022/025	<0.1	13	<0.1	<0.1	0	80	
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	13	0.3	0.2	40	80	
Anthracene	mg/kg	0.1	Org-022/025	<0.1	13	0.1	<0.1	0	[NT]	
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	13	0.6	0.4	40	84	
Pyrene	mg/kg	0.1	Org-022/025	<0.1	13	0.6	0.4	40	87	
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	13	0.4	0.3	29	[NT]	
Chrysene	mg/kg	0.1	Org-022/025	<0.1	13	0.4	0.2	67	89	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	13	0.6	0.4	40	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	13	0.3	0.2	40	76	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	13	0.2	0.1	67	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	13	<0.1	<0.1	0	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	13	0.2	0.2	0	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	87	13	79	79	0	81	[NT]

QUALITY CONTR	OL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date extracted	-			29/03/2022	13	29/03/2022	29/03/2022		29/03/2022	[NT]
Date analysed	-			30/03/2022	13	30/03/2022	30/03/2022		30/03/2022	[NT]
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	13	<0.1	<0.1	0	80	[NT]
НСВ	mg/kg	0.1	Org-022/025	<0.1	13	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	13	<0.1	<0.1	0	82	[NT]
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	13	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	13	<0.1	<0.1	0	77	[NT]
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	13	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-022/025	<0.1	13	<0.1	<0.1	0	85	[NT]
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	13	<0.1	<0.1	0	84	[NT]
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	13	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	13	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	13	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	13	<0.1	<0.1	0	82	[NT]
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	13	<0.1	<0.1	0	86	[NT]
Endrin	mg/kg	0.1	Org-022/025	<0.1	13	<0.1	<0.1	0	80	[NT]
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	13	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	13	<0.1	<0.1	0	72	[NT]
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	13	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	13	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	13	<0.1	<0.1	0	82	[NT]
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	13	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	83	13	78	77	1	78	[NT]

QUALITY CONTRO	L: Organoph	nosphorus	s Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date extracted	-			29/03/2022	13	29/03/2022	29/03/2022		29/03/2022	
Date analysed	-			30/03/2022	13	30/03/2022	30/03/2022		30/03/2022	
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	13	<0.1	<0.1	0	100	
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	13	<0.1	<0.1	0	[NT]	
Diazinon	mg/kg	0.1	Org-022/025	<0.1	13	<0.1	<0.1	0	[NT]	
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025	<0.1	13	<0.1	<0.1	0	[NT]	
Ronnel	mg/kg	0.1	Org-022/025	<0.1	13	<0.1	<0.1	0	79	
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	13	<0.1	<0.1	0	65	
Malathion	mg/kg	0.1	Org-022/025	<0.1	13	<0.1	<0.1	0	103	
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	13	<0.1	<0.1	0	88	
Parathion	mg/kg	0.1	Org-022/025	<0.1	13	<0.1	<0.1	0	64	
Bromophos-ethyl	mg/kg	0.1	Org-022	<0.1	13	<0.1	<0.1	0	[NT]	
Ethion	mg/kg	0.1	Org-022/025	<0.1	13	<0.1	<0.1	0	76	
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	13	<0.1	<0.1	0	[NT]	
Surrogate TCMX	%		Org-022/025	83	13	78	77	1	78	[NT]

QUALIT		Du	Spike Recovery %							
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date extracted	-			29/03/2022	13	29/03/2022	29/03/2022		29/03/2022	[NT]
Date analysed	-			30/03/2022	13	30/03/2022	30/03/2022		30/03/2022	[NT]
Aroclor 1016	mg/kg	0.1	Org-021	<0.1	13	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021	<0.1	13	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021	<0.1	13	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021	<0.1	13	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021	<0.1	13	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021	<0.1	13	<0.1	<0.1	0	90	[NT]
Aroclor 1260	mg/kg	0.1	Org-021	<0.1	13	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-021	83	13	78	77	1	78	[NT]

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date prepared	-			30/03/2022	13	30/03/2022	30/03/2022		30/03/2022	[NT]
Date analysed	-			30/03/2022	13	30/03/2022	30/03/2022		30/03/2022	[NT]
Arsenic	mg/kg	4	Metals-020	<4	13	10	12	18	100	[NT]
Cadmium	mg/kg	0.4	Metals-020	<0.4	13	<0.4	<0.4	0	99	[NT]
Chromium	mg/kg	1	Metals-020	<1	13	9	7	25	104	[NT]
Copper	mg/kg	1	Metals-020	<1	13	22	29	27	99	[NT]
Lead	mg/kg	1	Metals-020	<1	13	62	31	67	102	[NT]
Mercury	mg/kg	0.1	Metals-021	<0.1	13	0.2	<0.1	67	103	[NT]
Nickel	mg/kg	1	Metals-020	<1	13	12	20	50	107	[NT]
Zinc	mg/kg	1	Metals-020	<1	13	51	31	49	104	[NT]

QUALITY	CONTROL:	Chromiu	ım Suite			Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			30/03/2022	1	30/03/2022	30/03/2022		30/03/2022	
Date analysed	-			30/03/2022	1	30/03/2022	30/03/2022		30/03/2022	
pH _{kcl}	pH units		Inorg-068	[NT]	1	3.9	3.9	0	94	
s-TAA pH 6.5	%w/w S	0.01	Inorg-068	<0.01	1	0.12	0.12	0	[NT]	
TAA pH 6.5	moles H+/t	5	Inorg-068	<5	1	74	74	0	82	
Chromium Reducible Sulfur	%w/w	0.005	Inorg-068	<0.005	1	0.007	<0.005	33	[NT]	
a-Chromium Reducible Sulfur	moles H+/t	3	Inorg-068	<3	1	4	<3	29	110	
S _{HCI}	%w/w S	0.005	Inorg-068	<0.005	1	0.049	0.048	2	[NT]	
S _{KCI}	%w/w S	0.005	Inorg-068	<0.005	1	0.039	0.040	3	[NT]	
S _{NAS}	%w/w S	0.005	Inorg-068	<0.005	1	0.010	0.008	22	[NT]	
ANC _{BT}	% CaCO₃	0.05	Inorg-068	<0.05	1		[NT]		[NT]	
s-ANC _{BT}	%w/w S	0.05	Inorg-068	<0.05	1		[NT]		[NT]	
s-Net Acidity	%w/w S	0.005	Inorg-068	<0.005	1	0.14	0.13	7	[NT]	
a-Net Acidity	moles H ⁺ /t	5	Inorg-068	<5	1	84	80	5	[NT]	
Liming rate	kg CaCO₃/t	0.75	Inorg-068	<0.75	1	6	6	0	[NT]	
a-Net Acidity without ANCE	moles H⁺ /t	5	Inorg-068	<5	1	84	80	5	[NT]	
Liming rate without ANCE	kg CaCO₃/t	0.75	Inorg-068	<0.75	1	6.3	6.0	5	[NT]	
s-Net Acidity without ANCE	%w/w S	0.005	Inorg-068	<0.005	1	0.14	0.13	7	[NT]	[NT]

QUALITY	Chromiu	m Suite	Duplicate			Spike Recovery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	11	30/03/2022	30/03/2022		[NT]	
Date analysed	-			[NT]	11	30/03/2022	30/03/2022		[NT]	
pH _{kcl}	pH units		Inorg-068	[NT]	11	3.8	3.8	0	[NT]	
s-TAA pH 6.5	%w/w S	0.01	Inorg-068	[NT]	11	0.08	0.08	0	[NT]	
ТАА рН 6.5	moles H+/t	5	Inorg-068	[NT]	11	48	49	2	[NT]	
Chromium Reducible Sulfur	%w/w	0.005	Inorg-068	[NT]	11	<0.005	<0.005	0	[NT]	
a-Chromium Reducible Sulfur	moles H*/t	3	Inorg-068	[NT]	11	<3	<3	0	[NT]	
S _{HCI}	%w/w S	0.005	Inorg-068	[NT]	11	0.039	[NT]		[NT]	
S _{KCI}	%w/w S	0.005	Inorg-068	[NT]	11	0.036	[NT]		[NT]	
S _{NAS}	%w/w S	0.005	Inorg-068	[NT]	11	<0.005	[NT]		[NT]	
s-Net Acidity	%w/w S	0.005	Inorg-068	[NT]	11	0.078	[NT]		[NT]	
a-Net Acidity	moles H⁺ /t	5	Inorg-068	[NT]	11	49	[NT]		[NT]	
Liming rate	kg CaCO₃/t	0.75	Inorg-068	[NT]	11	4	[NT]		[NT]	
a-Net Acidity without ANCE	moles H+/t	5	Inorg-068	[NT]	11	49	[NT]		[NT]	
Liming rate without ANCE	kg CaCO₃/t	0.75	Inorg-068	[NT]	11	3.7	[NT]		[NT]	
s-Net Acidity without ANCE	%w/w S	0.005	Inorg-068	[NT]	11	0.078	[NT]		[NT]	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	Quality Control Definitions									
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.									
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.									
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.									
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.									
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which									

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

are similar to the analyte of interest, however are not expected to be found in real samples.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Asbestos: A portion of the supplied sample was sub-sampled for asbestos analysis according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g of sample in its own container.

Note: Samples 291952-13, 15, 16 were sub-sampled from jars provided by the client.

Acid Extractable Metals in Soil: The laboratory RPD acceptance criteria has been exceeded for 291952-13 for Pb,Ni & Zn. Therefore a triplicate result has been issued as laboratory sample number 291952-27.